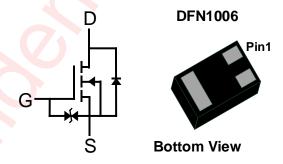


20V N-Channel Signal MOSFET

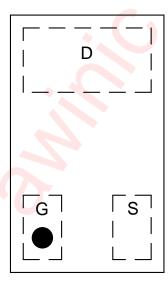
Features


- N-Channel Switch with Low R_{DS(ON)}
- Lead Free Product is Acquired
- Operated at Low Logic Level Gate Drive
- ESD protected
- DFN1006-1mm X0.6mm X0.45mm-3L

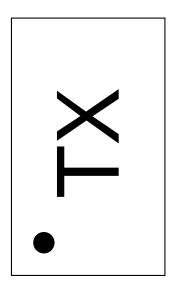
Applications

- Load/Power Switching
- Interfacing Switching
- Battery Management for Ultra Small Portable Electronics
- Logic Level Shift

General Description


Product Summary					
V _{DS}	20V				
В	240mΩ (Typ.)@ V _{GS} = 2.5V				
R _{DS(ON)}	190mΩ (Typ.)@ V _{GS} = 4.5V				
lo	0.7A				

Pin Configuration and Top Mark


AW402015NDNR

(Top View)

AW402015NDNR Marking

(Top View)

T---AW402015NDNR

X---Production Tracing Code

Ordering Information

Part Number	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW402015NDNR	V402015NDNR DFN 1mmX0.6mm X0.45mm -3L		MSL1	RoHS +HF	10000 units / Tape and Reel

Absolute Maximum Ratings (NOTE 1)

Symbol	Parameter	Rating	Unit
V _{DS}	Drain-Source Voltage	20	V
V _{GS}	Gate-Source Voltage	±10	V
lο	Drain Current(DC) (NOTE 5)	0.7	А
Ірм	Drain Current(Pulse) (NOTE 3)	1.8	А
P _D	Power Dissipation	0.1	W
TJ	Maximum Operating Junction Temperature	150	°C
Тѕтс	Storage Temperature	-55 ~ 150	°C
V _{ESD}	Human Body Model (NOTE 6)	±1	kV

Thermal Information

Symbol	Parameter	Condition	Value	Unit
R _θ JA	Maximum Junction to Ambient (NOTE 2, 4)	Steady-State	625	°C/W

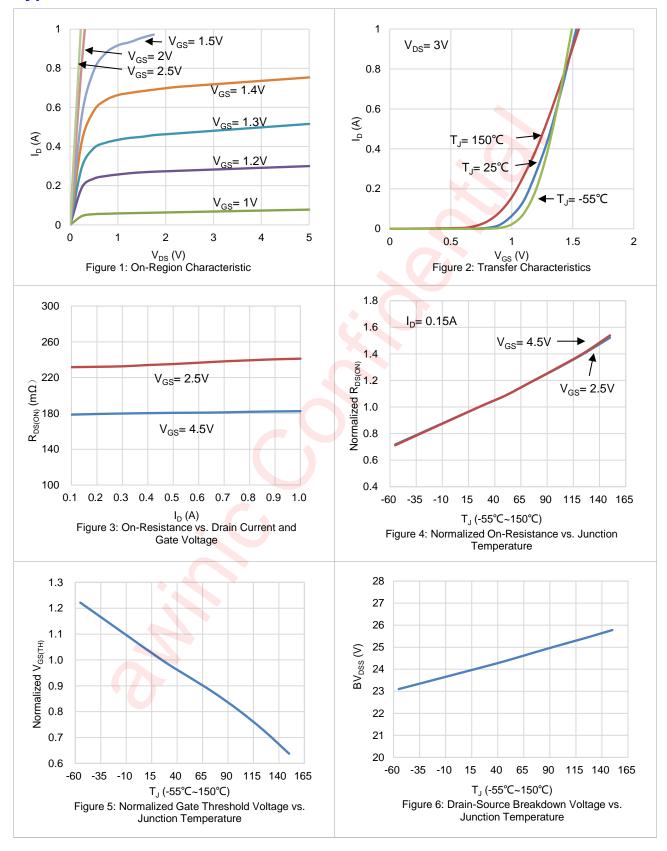
NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

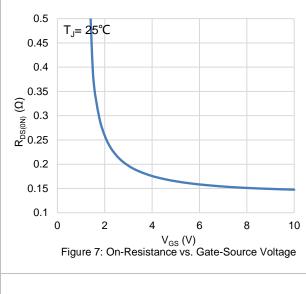
NOTE2: Mounted on FR-4 material with the minimum recommended pad size.

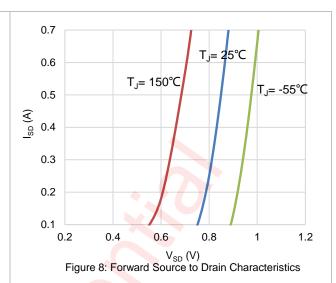
NOTE3: Test condition 10µs 25°C.

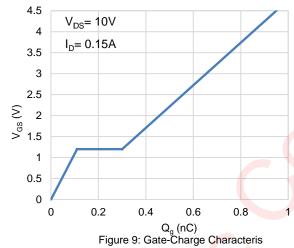
NOTE4: Thermal resistance from junction to ambient is highly dependent on PCB layout.

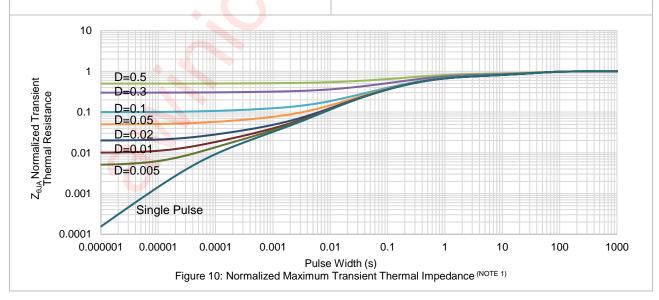
NOTE5: Rated according to R_{0JA}.

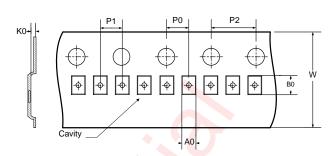

NOTE6: HBM Standards: ESDA/JEDEC JS-001-2017.


Electrical Characteristics

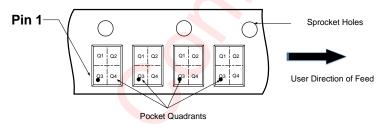

Symbol	Parameter	Test Condition	Min	Тур	Max	Unit
STATIC PA	ARAMETERS					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	20	-	-	V
IDSS	Zero Gate Voltage Drain Current	V _{DS} = 20V, V _{GS} = 0V	-	-	1	μA
I _{GSS}	Gate Leakage Current	V _{DS} = 0V, V _{GS} = ±10V	1 7 0	-	±20	μA
V _{GS(TH)}	Gate Threshold Voltage	V _{DS} = V _{GS} , I _D = 250µA	0.35	-	1.1	V
		V _{GS} = 4.5V, I _D = 0.15A	<u></u>	190	300	mΩ
$R_{\text{DS}(\text{ON})}$	Static Drain to Source On- Resistance	V _{GS} = 2.5V, I _D = 0.15A	-	240	390	mΩ
	redictarios	V _{GS} = 1.8V, I _D = 0.15A		380	570	mΩ
V _{SD}	Diode Forward Voltage	Is= 0.15A,V _{GS} = 0V	-	0.8	1.2	V
DYNAMIC	PARAMETERS				•	•
Rg	Gate Resistance	f= 1MHz	-	45	-	Ω
Ciss	Input Capacitance		-	51	-	pF
Coss	Output Capacitance	V _{GS} = 0V, V _{DS} = 16V, f= 1MHz	-	11	-	pF
C _{rss} Reverse Transfer Capacitance		766 07,760 101,1 111112	-	11	-	pF
SWITCHIN	IG PARAMETERS					•
Qg	Total Gate Charge		-	0.96	-	nC
Qgs	Gate Source Charge	V _{DS} = 10V,V _{GS} = 4.5V,I _D = 0.15A	-	0.11	-	nC
Q _{gd}	Gate Drain Charge		-	0.19	-	nC
t _{d(on)}	Turn-On Delay Time		-	5.2	-	ns
t _r	Turn-On Rise Time	V_{DS} = 10V, R_{g} = 10 Ω , I_{D} = 500mA	-	4.3	-	ns
$t_{\text{d(off)}}$	Turn-Off Delay Time	V _{GS} = 4.5V,	-	18.5	-	ns
t f	Turn-Off Fall Time		-	8.3	-	ns




Typical Electrical and Thermal Characteristics



Tape and Reel Information

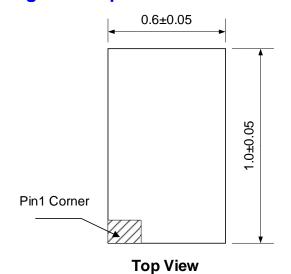

REEL DIMENSIONS D1

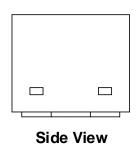
TAPE DIMENSIONS

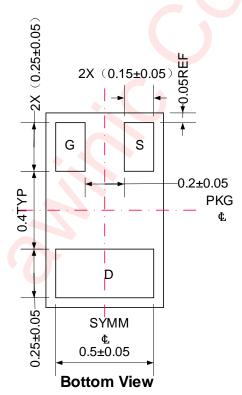
- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

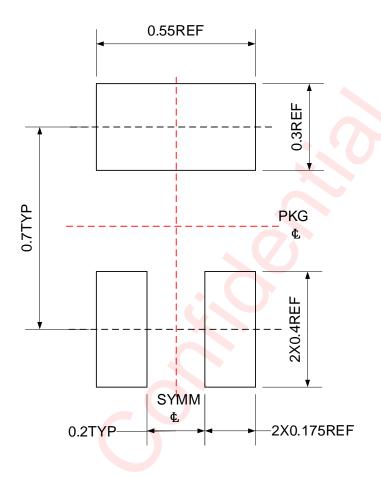

DIMENSIONS AND PIN1 ORIENTATION


D1	D0	A0	В0	K0	P0	P1	P2	W	Pin1 Quadrant	
(mm)	Tilli Quadrain									
178	9.5	0.72	1.17	0.55	2	2	4	8	Q3	


All dimensions are nominal

Package Description

awinic



Land Pattern Data

Unit: mm

Revision History

awinic

Version	Date	Change Record		
V1.0	Nov. 2022	Official released		
V1.1	Feb. 2023	Updated Land Pattern Data. (P8)		

AW402015NDNR

Feb. 2023 V1.1

Disclaimer

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.