Over-Voltage Protection Load Switch

Features

- Highly reliable FCQFN 1.2mm×1.2mm-9L package
- Integrated low R_{dson} nFET switch: typical 30mΩ
- 5A continuous current capability
- Default Over-Voltage Protection (OVP) threshold

AW33901: 5.95V

AW33902: 6.2V

> AW33905: 6.8V

> AW33909: 9.98V

AW33910: 10.5V

- OVP threshold adjustable range: 4V to 20V
- Input maximum voltage rating: 32V_{DC}
- Fast turn-off response: typical 50ns
- Over-Temperature Protection (OTP)
- Under-Voltage Lockout (UVLO)

Applications

- Smartphones
- Tablets
- Charging Ports

General Description

The AW339XX features an ultra-low $30m\Omega$ (typ.) R_{dson} nFET load switch. When input voltage exceeds the OVP threshold, the switch is turned off very fast to prevent damage to the protected downstream devices. The IN pin is capable of withstanding fault voltages up to $32V_{DC}$.

The default OVP threshold is 5.95V (AW33901), 6.2V (AW33902), 6.8V (AW33905), 9.98V (AW33909) and 10.5V (AW33910). The OVP threshold can be adjusted from 4V to 20V through external OVLO pin.

The device features an open-drain output \overline{ACOK} , when $V_{IN_UVLO} < V_{IN} < V_{IN_OVLO}$ and the switch is on, \overline{ACOK} will be driven low to indicate a good power input, otherwise it is in high impedance mode (HiZ).

The device features over-temperature protection that prevents itself from thermal damaging.

Typical Application Circuit

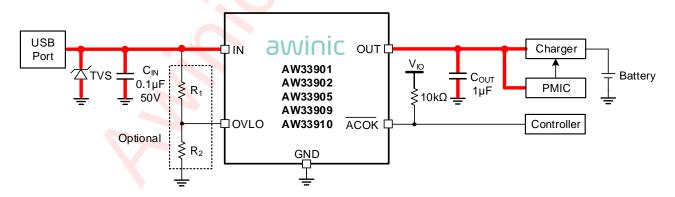
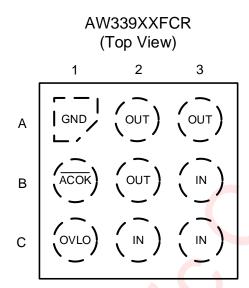
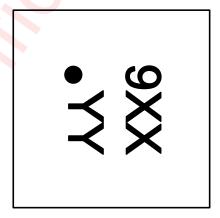


Figure 1 AW339XX typical application circuit


Note: when using default OVP threshold, R₁ and R₂ are not required, and connect OVLO pin to ground.

All the trademarks mentioned in the document are the property of their owners.


Device Comparison Table

Device		V _{IN_OVLO}			
Device	Condition	Min.	Тур.	Max.	Hysteresis(mV)
AW33901	V _{IN} rising	5.83	5.95	6.07	130
AW33902	V _{IN} rising	6.08	6.20	6.32	130
AW33905	33905 V _{IN} rising 6.66		6.80	6.94	140
AW33909	V _{IN} rising	9.78	9.98	10.18	210
AW33910	V _{IN} rising	10.29	10.50	10.71	210

Pin Configuration and Top Mark

AW339XXFCR Marking (Top View)

9XX – AW33901/AW33902/AW33905/ AW33909/AW33910 YY – Production tracking code

Figure 2 Pin Configuration and Top Mark

Pin Definition

Pin	Name	Description
B3,C2,C3	IN	Switch input and device power supply
A1	GND	Device ground
C1	OVLO	OVP threshold adjustment pin
A2,A3,B2	OUT	Switch output
B1	ACOK	Power good flag, active-low, open-drain. When VIN_UVLO < VIN < VIN_OVLO, ACOK is pulled low, otherwise it's Hi-Z state, and can be pulled high by external pull-up resistor

Functional Block Diagram

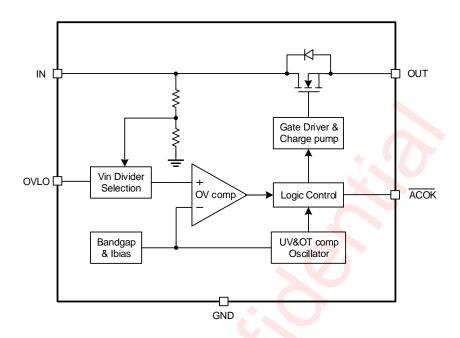


Figure 3 Functional Block Diagram

Typical Application Circuits

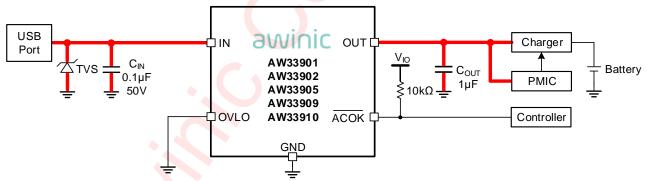


Figure 4 AW339XX typical application circuit(using default OVP threshold)

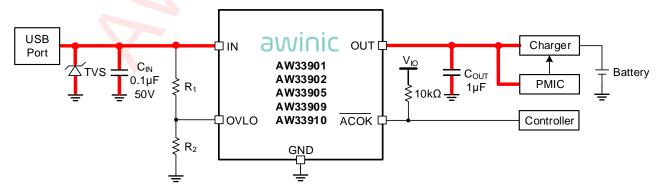


Figure 5 AW339XX typical application circuit(using external OVP threshold)

AW33901/AW33902/AW33905 AW33909/AW33910

Feb. 2020 V1.3

Notice for Typical Application Circuits:

- 1. When the default OVP threshold is used, connect OVLO pin to GND directly or through a 0Ω resistor. OVLO pin cannot be left floating.
- 2. If R_1 and R_2 are used to adjust the OVP threshold, it is better to use 1% precision resistors to improve the OVP threshold precision.
- 3. $C_{IN} = 0.1 \mu F$ is recommended for typical application, larger C_{IN} is also acceptable. The rated voltage of C_{IN} should be larger than the TVS maximum clamping voltage, if no TVS is applied and only AW339XX is used, the rated voltage of C_{IN} should be 50V.
- 4. C_{OUT} = 1μF is recommended for typical application, larger C_{OUT} is also acceptable. The rated voltage of C_{OUT} should be larger than the OVP threshold. For example, if the OVP threshold is 6.8V, the rated voltage of C_{OUT} should be 10V or higher.
- 5. Unidirectional TVS is suggested to use on VBUS port to withstand surge voltage, the maximum clamping voltage of the TVS should be below 35V.
- 6. If ACOK is not used, it can be left floating, or short to GND.

Ordering Information

Part Number	Temperature	Package	Marking	Moisture Sensitivity Level	Environmental Information	Delivery Form
AW33901FCR	-40°C – 85°C	FCQFN 1.2mm×1.2mm -9L	901	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW33902FCR	-40°C – 85°C	FCQFN 1.2mm×1.2mm -9L		<1.2mm 902 MSL1		Tape and Reel 3000pcs/Reel
AW33905FCR	-40°C – 85°C	FCQFN 1.2mm×1.2mm -9L	905	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW33909FCR	-40°C – 85°C	FCQFN C - 85°C 1.2mm×1.2mm 909 MSL1 -9L		MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel
AW33910FCR	-40°C – 85°C	FCQFN 1.2mm×1.2mm -9L	910	MSL1	ROHS+HF	Tape and Reel 3000pcs/Reel

Absolute Maximum Ratings (NOTE1)

Symbol	Parameter	Condition	Min.	Max.	Unit
Vin	Input DC voltage		-0.3	32	V
V _{IN_PUL}	Input peak pulse voltage	20µs pulse width, repeat 100 times		40	V
Vout	Output voltage		-0.3	See ^(NOTE 2)	V
V _{ACOK}	ACOK voltage		-0.3	7	٧
Vovlo	OVLO voltage		-0.3	7	V
Isw	Continuous current of switch IN- OUT ^(NOTE 3)	Continuous current on IN and OUT pin		5	А
I _{PEAK}	Peak current	Peak input and output current on IN and OUT pin(10ms)		8	A
I _{DIODE}	Continuous diode current	Continuous forward current through the nFET body diode		1.5	А
TA	Ambient temperature		-40	85	°C
TJ	Junction temperature		-40	150	°C
T _{STG}	Storage temperature		-65	150	°C
T _{LEAD}	Soldering temperature	At leads, 10 seconds		260	°C

NOTE1: Conditions out of those ranges listed in "absolute maximum ratings" may cause permanent damages to the device. In spite of the limits above, functional operation conditions of the device should within the ranges listed in "recommended operating conditions". Exposure to absolute-maximum-rated conditions for prolonged periods may affect device reliability.

NOTE2: 29V or V_{IN} +0.3V, whichever is smaller.

NOTE3: Limited by thermal design.

Thermal Information

Symbol	Parameter	Condition	Value	Unit
$R_{ heta JA}$	Thermal resistance from junction to ambient (NOTE 1)	In free air	70	°C/W

NOTE1: Thermal resistance from junction to ambient is highly dependent on PCB layout.

ESD and Latch-Up Ratings

Symbol	Parameter Condition		Value	Unit
	Human Body Model	All pins, per MIL-STD-883J Method 3015.9	±6.5	kV
V _{ESD}	Charged Device Model	All pins, per ESDA/JEDEC JS-002-2014	±2	kV
	Machine Model	All pins, per JESD22-A115C	±450	V
I _{Latch-up}	Latch-up	All pins, per JESD78D, I Trigger	±800	mA

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IN}	Input DC voltage	3		30	٧
C _{IN}	Input capacitance	/)	0.1		μF
Соит	Output load capacitance		1		μF

Electrical Characteristics

 T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 5V, C_{IN} = 0.1 μ F, I_{IN} ≤ 5A and T_A = 25°C.

Symbol	Description	Test Conditions		Min.	Тур.	Max.	Units
R _{dson}	Switch on resistance	V _{IN} = 5V, I _{OUT} =	= 1A, T _A = 25°C		30	41	mΩ
lα	Input quiescent current	V _{IN} = 5V, V _{OVL}	$_{\text{O}}=0\text{V},\text{I}_{\text{OUT}}=0\text{A}$		80	150	μΑ
In_ovlo	Input current at over- voltage condition	VIN = 5V, VOVLO	D=3V,Vоит = 0V		78	150	μΑ
V _{OVLO_} TH	OVLO set threshold			1.16	1.20	1.24	V
Vovlo_rng	OVP threshold adjustable range		. 0	4		20	V
V	External OVLO select	OVLO rising		0.19	0.26	0.33	V
Vovlo_sel	threshold	Hysteresis			0.06		V
lovlo	OVLO pin leakage current	Vovlo=Vovlo_T	Vovlo=Vovlo_th			0.2	μΑ
Protection							
		AW33901	V _{IN} rising	5.83	5.95	6.07	
			Hysteresis		0.13		
		AW33902	V _{IN} rising	6.08	6.20	6.32	- V
	*.(Hysteresis		0.13		
V	OVD trip lovel	AM2200E	V _{IN} rising	6.66	6.80	6.94	
V _{IN_OVLO}	OVP trip level	AW33905	Hysteresis		0.14		
		AVA/22000	V _{IN} rising	9.78	9.98	10.18	
		AW33909	Hysteresis		0.21		
		AM/22040	V _{IN} rising	10.29	10.50	10.71	
		AW33910	Hysteresis		0.21		
V	LIVI O trip level	V _{IN} rising	V _{IN} rising		2.9	3.0	
V _{IN_UVLO}	UVLO trip level	Hysteresis	Hysteresis		0.1		- V
	•	•					

Electrical Characteristics (Continued)

T_A = -40°C to 85°C unless otherwise noted. Typical values are guaranteed for V_{IN} = 5V, C_{IN} = 0.1µF, I_{IN}≤ 5A and $T_A = 25$ °C.

Symbol	Description	Test Conditions	Min.	Тур.	Max.	Units
Protection(d	continued)					
T _{SDN}	Shutdown temperature			150		°C
T _{SDN_HYS}	Shutdown temperature hysteresis			20		°C
Rdchg	Output discharge resistance	Vout=7V,Vovlo=3V		50		Ω
Digital Logic	cal Interface					
Vol	ACOK output low voltage	I _{SINK} =1mA			0.4	V
I _{LEAK_ACOK}	ACOK leakage current	V _{IO} =5V, ACOK de-asserted	-0.5		0.5	μA
Timing Cha	racteristics (Figure 6)					
t _{DEB}	Debounce time	From V _{IN} > V _{IN_UVLO} to 10% V _{OUT}		15		ms
t start	Start-up time	From V _{IN} > V _{IN_UVLO} to ACOK low		30		ms
ton	Switch turn-on time	R _L = 100 , C _L = 22 F, V _{OUT} from 10% V _{IN} to 90% V _{IN}		2		ms
toff	Switch turn-off time	$C_L = 0 \mu F$, $R_L = 100 \Omega$, $V_{IN} > V_{IN_OVLO}$ to V_{OUT} stop rising, V_{IN} rise at $10 V/\mu s$		50		ns

Timing Diagram

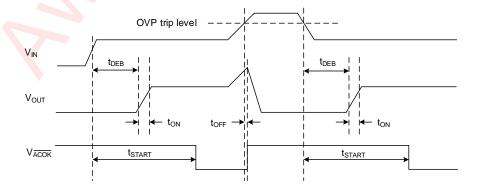


Figure 6 Timing diagram

Typical Characteristics

 V_{IN} = 5V, V_{OVLO} = 0V, C_{IN} = 0.1 μ F, C_{OUT} = 1 μ F, and T_A = 25°C unless otherwise specified.

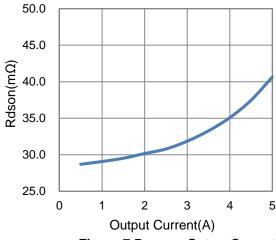


Figure 7 Rdson vs. Output Current

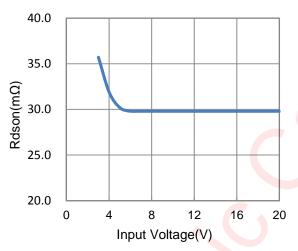


Figure 9 R_{dson} vs. Input Voltage (I_{OUT} = 1A)

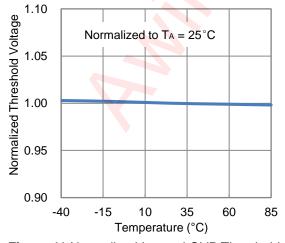


Figure 11 Normalized Internal OVP Threshold

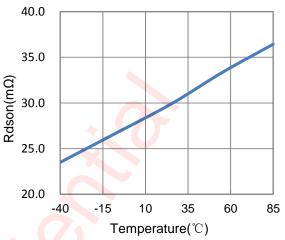


Figure 8 R_{dson} vs. Temp. (I_{OUT} = 1A)

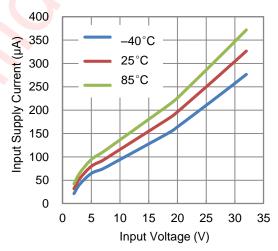


Figure 10 Input Supply Current vs. Supply Voltage

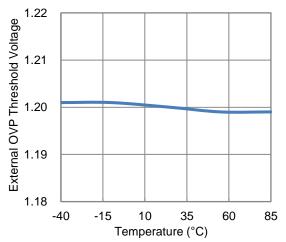


Figure 12 External OVP Threshold

Typical Characteristics (Continued)

 V_{IN} = 5V, V_{OVLO} = 0V, C_{IN} = 0.1 μ F, C_{OUT} = 1 μ F, and T_A = 25°C unless otherwise specified.

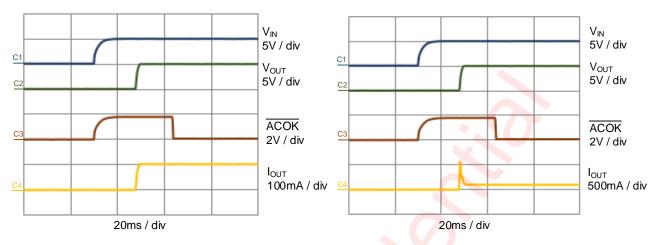


Figure 13 Power-up ($C_{OUT} = 1\mu F$, 100mA load).

Figure 14 Power-up ($C_{OUT} = 100 \mu F$, 100mA load)

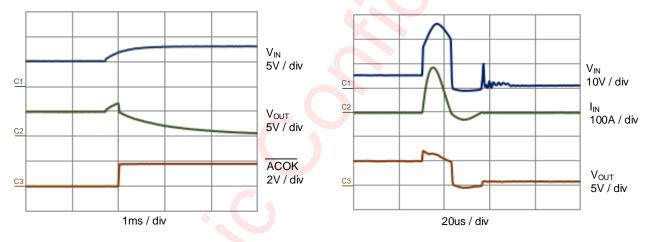


Figure 15 OVP Response (AW33905)

Figure 16 400V Surge Response (AW33905 with 12V TVS)

Detailed Functional Description

Device Operation

If the input voltage is between UVLO and OVP threshold, the internal charge pump begins to work after debounce time, the gate of the nFET switch will be slowly charged high till the switch is fully on. \overline{ACOK} will be driven low about 30ms after V_{IN} valid, indicating the switch is on with a good power input. If the input voltage exceeds the OVP trip level, the switch will be turned off in about 50ns. If input voltage falls below UVLO threshold, or over-temperature happens, the switch will also be turned off.

Over-Voltage Protection

If the input voltage exceeds the OVP rising trip level, the switch will be turned off in about 50ns. The switch will remain off until V_{IN} falls below the OVP falling trip level.

OVP Threshold Adjustment

If the default OVP threshold is used, OVLO pin must be grounded. If OVLO pin is not grounded, and by connecting external resistor divider to OVLO pin as shown in the typical application circuit, between IN and GND, the OVP threshold can be adjusted as following:

$$V_{IN_OVLO} = \frac{R_1 + R_2}{R_2} V_{OVLO_TH}$$

For example, if we select $R_1 = 1M\Omega$ and $R_2 = 100k\Omega$, then the new OVP threshold calculated from the above formula is 13.2V. The OVP threshold adjustment range is from 4V to 20V. When the OVLO pin voltage V_{OVLO} exceeds $V_{\text{OVLO}_\text{SEL}}$ (0.26V typical), V_{OVLO} is compared with the reference voltage $V_{\text{OVLO}_\text{TH}}$ (1.2V typical) to judge whether input supply is over-voltage.

ACOK Output

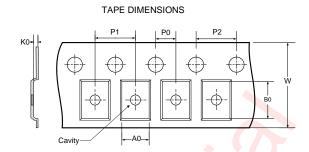
The device features an open-drain output \overline{ACOK} , it should be connected to the system I/O rail through a pull-up resistor. If the device is enabled and $V_{IN_UVLO} < V_{IN} < V_{IN_OVLO}$, \overline{ACOK} will be driven low indicating the switch is on with a good power input. If OVP, UVLO, or OT occurs, the switch will be turned off and \overline{ACOK} will be pulled high. If this function is not needed, \overline{ACOK} pin can be floating or grounded.

USB On-The-Go (OTG) Operation

If $V_{IN} = 0V$ and OUT is supplied by OTG voltage, the body diode of the load switch conducts current from OUT to IN and the voltage drop from OUT to IN is approximately 0.7V. When $V_{IN} > V_{IN_UVLO}$, internal charge pump begins to open the load switch after debounce time (15ms typical). After switch is fully on, current is supplied through switch channel and the voltage drop from OUT to IN is minimum.

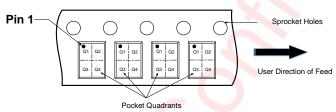
AW33901/AW33902/AW33905 AW33909/AW33910

Feb. 2020 V1.3


PCB Layout Consideration

To make fully use of the performance of AW339XX, the guidelines below should be followed.

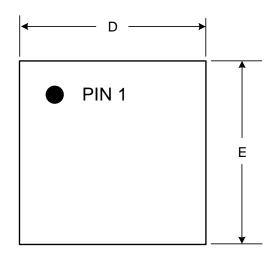
- 1. All the peripherals should be placed as close to the device as possible. Place the input capacitor C_{IN} on the top layer (same layer as the AW339XX) and close to IN pin, and place the output capacitor C_{OUT} on the top layer (same layer as the AW339XX) and close to OUT pin.
- 2. IN pin routing passes through the external TVS firstly, and then connect AW339XX.
- 3. Red bold paths on figure 4 and 5 are power lines that will flow large current, please route them on PCB as straight, wide and short as possible.
- 4. If R₁ and R₂ are used, route OVLO line on PCB as short as possible to reduce parasitic capacitance.
- 5. The power trace from USB connector to AW339XX may suffer from ESD event, keep other traces away from it to minimize possible EMI and ESD coupling.
- 6. Use rounded corners on the power trace from USB connector to AW339XX to decrease EMI coupling.


Tape and Reel Information

REEL DIMENSIONS D₁ 0

- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
 P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D0: Reel Width

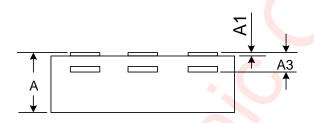
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


DIMENSIONS AND PIN1 ORIENTATION

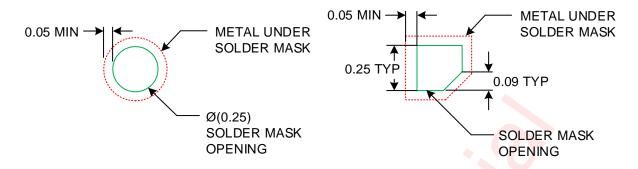
D1 (mm)	D0 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
178	8.4		1.38	` '	2	4	4	8	Q1

All dimensions are nominal

Package Description


TOP VIEW

BOTTOM VIEW


SIDE VIEW

SYMBOL	MIN	NOM	MAX	
Α	0.50	0.55	0.60	
A1	0.00	0.02	0.05	
A3	0.152REF.			
D	1.10	1.20	1.30	
Е	1.10	1.20	1.30	
е		0.400REF	•	
L	0.18	0.25	0.30	
L1	0.090REF.			
L2	0.250REF.			

Unit: mm

Solder Mask Details

SOLDER MASK DETAILS NOT TO SCALE

NOTE:

Unit: mm.

Revision History

Version	Date	Change Record			
V1.0	December, 2017	Officially released.			
V1.1	February, 2018	 Modified Reel information. Modified POD information. Modified Solder Mask Details. 			
V1.2	September, 2018	Storage Temperature Modified			
		Modified package description in features and ordering Information, and removed it from general description. (P1 and P5)			
		2. Modified ACOK pin description. (P2)			
		3. Added item 5 and 6 of notice for typical application circuits. (P4)			
V1.3	February, 2020	4. Deleted table 1 table of figures. (P11)			
		5. Modified OVP threshold adjustment description. (P12)			
		6. Reflow curve deleted. Deleted figure 17 package reflow oven thermal profile and table 2 package reflow standard.			
		7. Update tape and reel information.			

AW33901/AW33902/AW33905 AW33909/AW33910

Feb. 2020 V1.3

Disclaimer

Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.