

Low Quiescent, High Efficiency 1.5A Buck-Boost Converter with I²C Interface

Features

- Buck, Buck-Boost and Boost Operation with Seamless Mode Transition
- 2.2V to 5.5V Input Supply Voltage Range
- 1.4V to 4.575V Output Voltage Range with Digitally Programmable (25mV/steps)
- 2.8uA Low Quiescent Current
- 0.3uA Shutdown Current
- Excellent Load Transient Response
- Allows Dynamically-Voltage-Scaling Control (SR:2V/ms, 5V/ms, 10V/ms, 20V/ms)
- Allows Dynamically-Voltage-Scaling Control
- Automatic PFM Mode and Forced PWM Mode Selection
- Up to 1MHz I2C Interface (VSEL=H, ADDR=0X75; VSEL=L, ADDR=0X76)
- Converter I2C Default EN = 0
- Output Voltage Selection (VSEL=H, VOUT=2.875V Default; VSEL=L, VOUT=2.675V Default)
- Maximum Continuous Output Current:
 Up to 1A for VIN ≥ 2.5V, VOUT = 3.5V
 Up to 1.2A for VIN ≥ 3V, VOUT = 4.5V
 Up to 1.5A for VIN ≥ 4V, VOUT = 4.5V
- WLCSP 1.3X1.3-9B Package

Applications

- AF & OIS Driver
- Wearable Devices
- Portable Devices
- TWS Earbud Chargers
- Optical Heart Rate Monitor LED Bias
- Battery Powerd Systems
- Smartphones

General Description

The AWP37702 is a high-efficiency, single inductor, advanced COT synchronous Buck-Boost converter with 2.2V to 5.5V wide input voltage range and well regulate to the digitally programmable output voltage from 1.4V to 4.575V. Which is suitable for wide input supply range applications, regardless of input voltage is lower, higher than or even equal to the output voltage. The COT control architecture features outstanding line/load transient response, seamless transition between buck and boost modes, provides stable operation with small ceramic output capacitors and without complicated external compensation.

The AWP37702 features I²C interface, which allows programmable output voltage, soft-start slew-rate adjusted and device status monitoring. The target output voltage can also be switched through external VSEL pin to perform dynamically-voltage-scaling (DVS), and the ramp-up slew-rate and ramp mode of DVS can also be set by setting the related registers.

The AWP37702 has internal soft start module to limits the inrush current. Full protection features include over current protection(OCP), over voltage protection(OVP), under voltage protection(UVP) and over temperature protection(OTP). The AWP37702 is available in WLCSP 1.3X1.3-9B package.

Typical Application Circuit

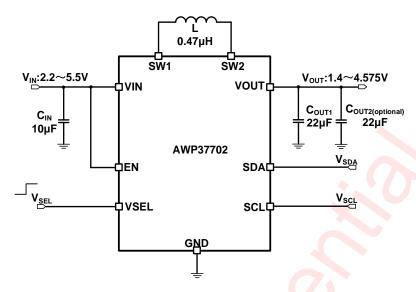
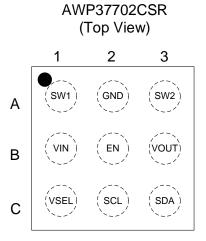
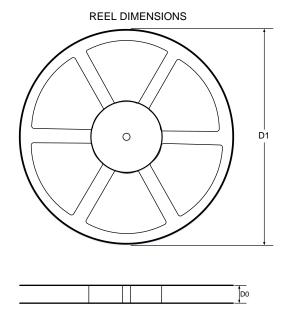
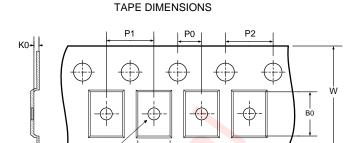


Figure 1 AWP37702 Typical Application Circuit

NOTE: When the IOUT is $\leq 1A$, a 22 μ F COUT is recommended. When the IOUT is > 1A, 2 \times 22 μ F COUT capacitors are recommended.

Pin Configuration

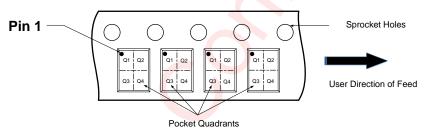




Figure 2 Pin Configuration

Pin Definition

No.	NAME	DESCRIPTION			
A1	SW1	Switching node 1. Connect to the inductor.			
A2	GND	Ground. All signals are referenced to this pin.			
A3	SW2	Switching node 2. Connect to the inductor.			
B1	VIN	Power input.			
B2	EN	Enable control input. A logic-high enables the converter; a logic-low forces the device into shutdown mode.			
В3	VOUT	Power output.			
C1	VSEL	Voltage select pin. When this pin is logic low, VOUT is set by the VOUT1 register; This pin is logic high, VOUT is set by the VOUT2 register.			
C2	SCL	I ² C serial interface clock.			
C3	SDA	I ² C serial interface data.			

Tape And Reel Information

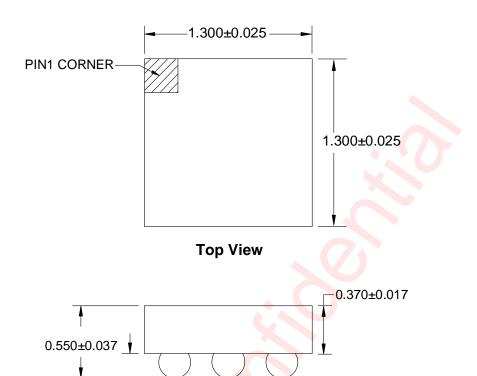


- A0: Dimension designed to accommodate the component width
- B0: Dimension designed to accommodate the component length
- K0: Dimension designed to accommodate the component thickness
- W: Overall width of the carrier tape
- P0: Pitch between successive cavity centers and sprocket hole
- P1: Pitch between successive cavity centers
- P2: Pitch between sprocket hole
- D1: Reel Diameter
- D0: Reel Width

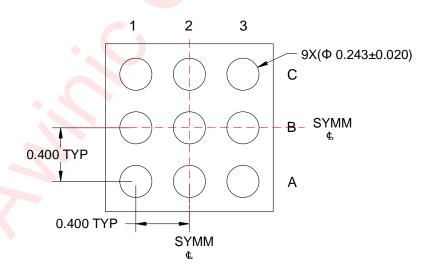
Cavity

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Note: The above picture is for reference only. Please refer to the value in the table below for the actual size

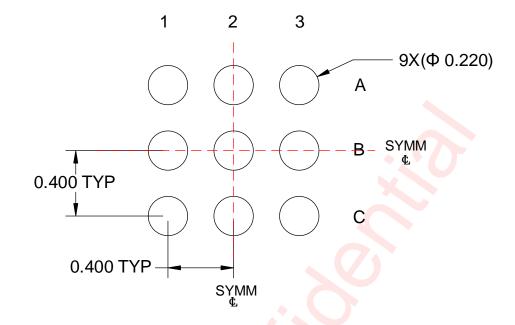

DIMENSIONS AND PIN1 ORIENTATION

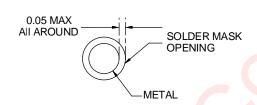
D1	D0	A0	B0	K0	P0	P1	P2	W	Pin1 Quadrant
(mm)	(mm)	(mm)	(mm)	(mm)					Pin'i Quadrant
180.00	8.60	1.50	1.46	0.68	2.00	4.00	4.00	8.00	Q1

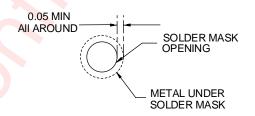

All dimensions are nominal

Package Description

Side View




Bottom View


Unit: mm

Land Pattern Data

NON-SOLDER MASK DEFINED

SOLDER MASK DEFINED

Unit: mm

Revision History

Version	Date	Change Record			
V1.0	Apr. 2025	Officially released			
V1.1	Jul. 2025	Update Features. (P1) Update Typical Application Circuit. (P2)			

Disclaimer

All trademarks are the property of their respective owners. Information in this document is believed to be accurate and reliable. However, Shanghai AWINIC Technology Co., Ltd (AWINIC Technology) does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

AWINIC Technology reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. Customers shall obtain the latest relevant information before placing orders and shall verify that such information is current and complete. This document supersedes and replaces all information supplied prior to the publication hereof.

AWINIC Technology products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an AWINIC Technology product can reasonably be expected to result in personal injury, death or severe property or environmental damage. AWINIC Technology accepts no liability for inclusion and/or use of AWINIC Technology products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications that are described herein for any of these products are for illustrative purposes only. AWINIC Technology makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

All products are sold subject to the general terms and conditions of commercial sale supplied at the time of order acknowledgement.

Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Reproduction of AWINIC information in AWINIC data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. AWINIC is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of AWINIC components or services with statements different from or beyond the parameters stated by AWINIC for that component or service voids all express and any implied warranties for the associated AWINIC component or service and is an unfair and deceptive business practice. AWINIC is not responsible or liable for any such statements.